发表文章及专利: [1] L. Shi, G.H. Yang, K. Tao, Y. Yoneyama, Y.S. Tan, N. Tsubaki*. An Introduction of CO2 Conversion by Dry Reforming with Methane and New Route of Low-Temperature Methanol Synthesis. Accounts of Chemical Reserach, 46 (2013) 1838-1847. IF: 24.3, SCI 引用60次 [2] L. Shi, K. Tao, T. Kawabata, T. Shimamura, X.J. Zhang, N. Tsubaki*. Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: as-burnt Co/SiO2 catalysts for Fischer-Tropsch synthesis. ACS Catalysis. 1 (2011) 1225-1233. IF: 7.6, SCI 引用32次 [3] L. Shi, W.Z. Shen, G.H. Yang, X.J. Fan, Y.Z. Jin, C.Y. Zeng, K. Matsuda, N. Tsubaki*. Formic Acid Directly Assisted Solid-State Synthesis of Metallic Catalysts without Further Reduction: As-Prepared Cu/ZnO Catalysts for Low-Temperature Methanol Synthesis. Journal of Catalysis, 302 (2013) 83-90. IF: 6.0, SCI 引用20次 [4] L. Shi, K. Tao, R.Q. Yang, F.Z. Meng, C. Xing, N. Tsubaki*. Study on the preparation of Cu/ZnO catalyst by sol–gel auto-combustion method and its application for low-temperature methanol synthesis. Applied Catalysis A: General, 401 (2011) 46-55. IF: 3.7, SCI 引用40次 [5] L. Shi, Y.Z. Jin, C. Xing, C.Y. Zeng, T. Kawabata, K. Imai, K. Matsuda, Y.S. Tan, N. Tsubaki*. Studies on surface impregnation combustion method to prepare supported Co/SiO2 catalysts and its application for Fischer-Tropsch synthesis. Applied Catalysis A: General, 435-436 (2012) 217-224. IF: 3.7, SCI 引用32次 [6] L. Shi, R.Q. Yang, K. Tao, Y. Yoneyama, Y.S. Tan, N. Tsubaki*. Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: As-burnt Cu-ZnO/SiO2 catalyst for low-temperature methanol synthesis. Catalysis Today, 185 (2012) 54-60. IF: 3.3, SCI 引用15次 [7] L. Shi, Y.S. Tan, N. Tsubaki*. A solid-state combustion method towards metallic Cu-ZnO catalyst without further reduction and its application to low temperature methanol synthesis. ChemCatChem, 4 (2012) 863-871. IF: 5.0, SCI 引用14次 [8] L. Shi, C.Y. Zeng, Y.Z. Jin, T.J. Wang, N. Tsubaki*. A sol-gel auto-combustion method to prepare Cu/ZnO catalysts for low-temperature methanol synthesis. Catalysis Science & Technology, 2 (2012) 2569-2577. IF: 4.8, SCI 引用14次 [9] C.Y. Zeng, L. Shi*, J. Sun, Y. Yoneyama, T.J. Wang, and N. Tsubaki*. Nitrate Combustion methods to prepare highly active SiO2-supported Cu-ZnO catalysts for low-temperature methanol synthesis: comparative behaviors with and without SiO2. Bulletin of the Chemical Society of Japan, 86 (2013) 1202-1209. IF: 3.5, SCI [10] L. Shi, C.Y. Zeng, Q.H. Lin, P. Lu, W.Q. Niu, N. Tsubaki*. Citric acid assisted one-step synthesis of highly dispersed metallic Co/SiO2 without further reduction: As-prepared Co/SiO2 catalysts for Fischer-Tropsch synthesis. Catalysis Today, 228 (2014) 206-211. IF: 4.6, SCI 引用21次 [11] W.Z. Li, W.Y. Zhang, L. Shi*, Y.X. Wang, Y.S. Tan, R.G. Fan, N. Tsubaki*. Highly Active SiO2-supported Cu-ZnO Catalysts Prepared by Combustion Methods for Low-temperature Methanol Synthesis: Comparative Activity Test with or without SiO2 Support. Journal of the Japan Petroleum Institute. 58 (2015) 321-328. IF: 1.0, SCI [12] 石磊, 张婉莹, 王玉鑫, N. Tsubaki. 低温甲醇合成研究进展. 化工学报, 66 (2015) 3333-3340. EI 引用1次 [13] J.C. Zhang*, L. Shi*, Y. Meng, Y. Fu, Z.B. Liu J.M. Zhu. A highly efficient layered double hydroxide catalyst for direct ethoxylation of butyl acetate to oligo-ethylene glycol butyl ether acetates. Applied Organometallic Chemistry, 30 (2016) 451-457. IF: 2.6, SCI [14] L. Shi*, D. Sun, Y.X. Wang, Y.S. Tan, J. Li, S.R. Yan, R.G. Fan, N. Tsubaki*. Formic acid-assisted synthesis of highly efficient Cu/ZnO catalysts: effect of HCOOH/Cu molar ratios. Catalysis Science & Technology, 6 (2016) 4777-4785. IF: 5.7, SCI 引用1次 [15] L. Shi*, P.F. Zhu, R.Q. Yang, X.D. Zhang, J. Yao, F. Chen, X.H. Gao, P.P. Ai, N. Tsubaki*. Functional rice husk as reductant and support to prepare as-burnt Cu-ZnO based catalysts applied in low-temperature methanol synthesis. Catalysis Communications, 89 (2017) 1-3. IF: 3.38, SCI 引用5次 [16] 石磊, 姚杰, 朱文良, 刘中民. 磺酸树脂催化甲缩醛一步羰化制高附加值甲氧基乙酸甲酯. 化工学报, 68 (2017) 3739-3746. EI 封面文章 引用2次 [17] Y.M. Ni#, L. Shi#, H.C. Liu, W.N. Zhang, Y. Liu, W.L. Zhu*, Z.M. Liu*. A green route for methanol carboxylation, Catalysis Science & Technology, 7 (2017) 4818-4822. #共同第一作者,IF: 5.7, SCI [18] F. Chen, L. Shi*, J. Yao, Y. Wang, D.X. Zhang, W.L. Zhu, Z.M. Liu, A highly efficient sulfonic acid resin for liquidphase carbonylation of dimethoxymethane. Catalysis Science & Technology, 8 (2018) 580-590. IF: 5.7, SCI [19] D.X. Zhang, L. Shi*, Y. Wang, F. Chen, J. Yao, X.Y. Li, Y.M. Ni, W.L. Zhu, Z.M. Liu, Effect of mass-transfer control on HY zeolites for dimethoxymethane carbonylation to methyl methoxyacetate. Catalysis Today, 316 (2018) 114-121. IF: 4.636, SCI [20] 王岩,石磊*, 范家麒, 陈飞, 姚杰, 许光文*. 环丁砜处理磺酸树脂高效催化聚甲氧基二甲醚合成. 70 (2019) 126-137. EI [21] Wenjie Deng, Lei Shi*, Jie Yao, Zhigang Zhang*, A review on transesterification of propylene carbonate and methanol for dimethyl carbonate synthesis, Carbon Resource Conversion, 2(2019)198-212 [22] Fei Chen, Dongxi Zhang, Lei Shi*, Yan Wang, Guangwen Xu*, Optimized Pore Structures of Hierarchical HY Zeolites for Highly Selective Production of Methyl Methoxyacetate, Catalysts, 9(2019)865-880, IF: 3.44, SCI [23] Fei Chen, Lei Shi*, Excellent prospects in methyl methoxyacetate synthesis with a highly active and reusable sulfonic acid resin catalyst,New J. Chem., 44(2020)1346-1353, IF:3.09, SCI [24] 石磊*, 于悦, 王吉宇, 张志刚, 许光文*, 酯交换法合成碳酸甲乙酯研究进展,燃料化学学报,47(2019)1504-1522, EI 第一发明人已授权专利40余项,部分列举如下:
1) |
Method for Directly Preparing Glycol Dimethyl Ether and CO-producing Ethylene Glycol From Ethylene Glycol Monomethyl Ether |
DF180039US |
2) |
エチレングリコールモノメチルエーテルからエチレングリコールジメチルエーテルを直接に製造してエチレングリコールを同時生産する方法 |
特許第6549793号 |
3) |
一种工业甲缩醛原料除水工艺方法 |
ZL201610801294.7 |
4) |
以含甲醇的甲缩醛为原料制备甲氧基乙酸甲酯的方法 |
ZL201610801744.2 |
5) |
一种高活性、免还原铁基催化剂的制备方法 |
ZL201610120108.3 |
6) |
一种制备二乙氧基甲烷的方法 |
ZL201610120111.5 |
7) |
一种高效磺酸树脂催化剂改性方法 |
ZL201610223365.X |
8) |
一种合成聚甲氧基二甲醚的磺酸树脂催化剂改性方法 |
ZL201610223149.5 |
9) |
一种高活性稻壳铁基催化剂的制备方法 |
ZL201610120119.1 |
10) |
一种取热传质催化三重作用固定床低温甲醇的合成方法 |
ZL201310117235.4 |
|